因而正確認(rèn)識(shí)臭氧在水中的物理、化學(xué)過程與臭氧殺菌的生物化學(xué)過程是極重要的。由于臭氧在水中溶解的機(jī)理以及臭氧對(duì)生物細(xì)胞物質(zhì)交換的影響過程極為復(fù)雜,本文不能詳細(xì)的探討,只就臭氧殺菌做一般性的討論。
其中:u:傳質(zhì)速度,可用在t時(shí)間內(nèi)從氣相傳入液相的臭氧量G確定,即dG/dt。K:傳質(zhì)系數(shù),F(xiàn):氣相與液相的接觸表面積,△C傳質(zhì)過程中的動(dòng)力,可用臭氧在實(shí)際情況下與平衡時(shí)的濃度差決定(即水中臭氧濃度與臭氧源中臭氧濃度差別越大,傳質(zhì)速度越大)。
分析一般傳質(zhì)方程式可以知道,首先要使臭氧盡多地溶入水中,就要盡量加大臭氧與水的接觸表面積F,而這是接觸裝置決定的。
其次,△C說明臭氧發(fā)生器的濃度越高,越有利于水對(duì)臭氧的吸收·
第三,傳質(zhì)系數(shù)K則與多種因素有關(guān),K(總傳質(zhì)系數(shù))為氣相傳質(zhì)系數(shù)K氣與液相傳質(zhì)系數(shù)K液之和,而臭氧屬于低溶解度氣體,K氣可忽略不計(jì).而根據(jù)亨利一道爾頓定律,K液是多種物理參數(shù)的復(fù)合函數(shù)。
K液=f(T,P,u,w,p,ó)
其中臭氧溶解量與氣體壓力P成正比而與水溫T成反比。
隨著兩相相對(duì)線速度的增大,氣液兩相接觸表面積F及其更新速度也增大,但每個(gè)氣泡與液體接觸的時(shí)間會(huì)減小,因此從綜合效果來(lái)看,氣體-液體的相對(duì)線速度應(yīng)維持在一個(gè)范圍內(nèi)較好.
液體的粘滯度u,密度p及氣液間介面表面張力。的提高可使相間表面更新速度降低,并相應(yīng)使K液減小,所以Km與u,p,o成反比,對(duì)于各種飲用水,此項(xiàng)可忽略不計(jì)。
在應(yīng)用中,我們應(yīng)關(guān)注溫度、氣壓兩個(gè)參數(shù),而在設(shè)計(jì)接觸裝置時(shí)則應(yīng)注意到水流、氣流的相對(duì)速度,尤其是其中的溫度,因?yàn)闇囟雀吡瞬坏顾畬?duì)臭氧的吸收效果下降,而且臭氧本身會(huì)因溫度過高而分解。國(guó)內(nèi)就曾發(fā)生過試圖用臭氧處理70·℃的水溫而沒有取得任何效果的例證。
1894年梅爾費(fèi)特(Mailfert)根據(jù)前人的實(shí)驗(yàn)報(bào)告求出以下臭氧在水中的濃度: 溫度(℃) O 11.8 15 19 27 405560
溶解度(L氣/L水) 0.64 0.5 O.456 0.381 O.27 0.112O.031O 這組數(shù)據(jù)大致里線性,而且表明臭氧在水中的溶解度大約是氧的lO-15倍。
威諾薩(venosa)與奧帕特金(Opatken)指出,決定臭氧(或任何氣體)在某液體中的溶解度的基本關(guān)系式是亨利定律.即在一定溫度下,任何氣體溶解于已知體積的液體中的重量,將與該氣體作用在液體上的分壓成正比。
而且此定律可推導(dǎo)出結(jié)論:在標(biāo)準(zhǔn)溫度與壓力下,臭氧是氧溶解度的13倍。
從亨利定律可以得出結(jié)論:要提高臭氧在水中的溶解度,必須提高臭氧氣在整個(gè)氣源中分壓,即提高臭氧源的濃度,如果臭氧源的濃度不夠,處理時(shí)間再長(zhǎng),水中臭氧濃度也提不高(因已達(dá)到濃度平衡)。